Problem 81

Consider the equation $s=s_{0}+v_{0} t+a_{0} t^{2} / 2+j_{0} t^{3} / 6+S_{0} t^{4} / 24+c t^{5} / 120$, where s is a length and t is a time. What are the dimensions and SI units of (a) s_{0}, (b) v_{0}, (c) a_{0}, (d) j_{0}, (e) S_{0}, and (f) c ?

Solution

If s is length, then the six quantities being added, s_{0} and $v_{0} t$ and $a_{0} t^{2} / 2$ and $j_{0} t^{3} / 6$ and $S_{0} t^{4} / 24$ and $c t^{5} / 120$, have to have dimensions of length as well. This means the dimensions are

$$
\begin{array}{rlllll}
{\left[s_{0}\right]} & =\text { Length } & & & \\
{\left[v_{0} t\right]} & =\text { Length } & \rightarrow & {\left[v_{0}\right] \cdot \text { Time }=\text { Length }} & \rightarrow & {\left[v_{0}\right]=\frac{\text { Length }}{\text { Time }}} \\
{\left[\frac{a_{0} t^{2}}{2}\right]} & =\text { Length } & \rightarrow & {\left[a_{0}\right] \cdot \text { Time }^{2}=\text { Length }} & \rightarrow & {\left[a_{0}\right]=\frac{\text { Length }}{\text { Time }^{2}}} \\
{\left[\frac{j_{0} t^{3}}{6}\right]} & =\text { Length } & \rightarrow & {\left[j_{0}\right] \cdot \text { Time }^{3}=\text { Length }} & \rightarrow & {\left[j_{0}\right]=\frac{\text { Length }^{\text {Time }^{3}}}{}} \\
{\left[\frac{S_{0} t^{4}}{24}\right]} & =\text { Length } & \rightarrow & {\left[S_{0}\right] \cdot \text { Time }^{4}=\text { Length }} & \rightarrow & {\left[S_{0}\right]=\frac{\text { Length }^{\text {Time }}}{}} \\
{\left[\frac{c t^{5}}{120}\right]} & \rightarrow \text { Length } & \rightarrow & {[c] \cdot \text { Time }^{5}=\text { Length }} & \rightarrow & {[c]=\frac{\text { Length }}{\text { Time }^{5} .}}
\end{array}
$$

Their SI units are

$$
\begin{aligned}
& {\left[s_{0}\right]=\text { meters }} \\
& {\left[v_{0}\right]=\frac{\text { meters }}{\text { second }}} \\
& {\left[a_{0}\right]=\frac{\text { meters }_{\text {second }^{2}}}{\left[j_{0}\right]=\frac{\text { meters }_{\text {second }^{3}}}{\left[S_{0}\right]=\frac{\text { meters }_{\text {second }^{4}}}{\text { meters }^{5}}}} \begin{array}{l}
\text { second }
\end{array}} \\
& {[c]=}
\end{aligned}
$$

